A K3 sigma model with $ \mathbb{Z}_2^8 $ : $ {{\mathbb{M}}_{20 }} $ symmetry

Collection with item attached
2014_02
Item details URL
http://open-repository.kisti.re.kr/cube/handle/open_repository/124364.do
Title
A K3 sigma model with $ \mathbb{Z}_2^8 $ : $ {{\mathbb{M}}_{20 }} $ symmetry
Description
The K3 sigma model based on the $ {{\mathbb{Z}}_2} $ -orbifold of the D 4 -torus theory is studied. It is shown that it has an equivalent description in terms of twelve free Majorana fermions, or as a rational conformal field theory based on the affine algebra $ \widehat{\mathfrak{su}}{(2)^6} $ . By combining these different viewpoints we show that the $ \mathcal{N} $ = (4 , 4) preserving symmetries of this theory are described by the discrete symmetry group $ \mathbb{Z}_2^8 $ : $ {{\mathbb{M}}_{20 }} $ . This model therefore accounts for one of the largest maximal symmetry groups of K3 sigma models. The symmetry group involves also generators that, from the orbifold point of view, map untwisted and twisted sector states into one another.
provenance
Made available in Cube on 2015-09-04T11:42:12Z (GMT). No. of bitstreams: 0
creator
Matthias R. Gaberdiel
Anne Taormina
Roberto Volpato
Katrin Wendland
date
2014-02-05
accessioned
2015-09-04T11:42:12Z
available
2015-09-04T11:42:12Z
issued
2015-09-04
identifier
doi:10.1007/JHEP02(2014)022
http://repo.scoap3.org/record/1246
arXiv:1309.4127
oai:repo.scoap3.org:1246
uri
http://open-repository.kisti.re.kr/cube/handle/open_repository/124364.do
publisher
Springer/SISSA


Files in This Item
main.pdf971KBDownloadView
main.xml207.9KBDownloadView